Preventing Falls in People with Cognitive Impairment Is there any Evidence?

A/Prof Jacqueline CT Close
Prince of Wales Hospital & Clinical School
Neuroscience Research Australia
University of New South Wales

Epidemiology of falls in CI/ Dementia

- Annual incidence of falls in cognitively impaired populations is 70-80% ie. double the normal population
- Fractures are up to 3x commoner in people with dementia
- Gait abnormalities are more common in people with dementia espec VaD
- Psychotropic drug use more common in people with dementia
- Orthostatic hypotension more common

AGS/BGS Guidelines - Jan 2010

"There is insufficient evidence to recommend for or against multifactorial or single interventions to prevent falls in older persons with known dementia living in the community or in long-term care facilities".

Multifactorial intervention after a fall in older people with cognitive impairment and dementia presenting to the accident and emergency department: randomised controlled trial

Fiona E Shaw, John Bond, David A Richardson, Pamela Dawson, I Nicholas Steen, Ian G McKeith, Rose Anne Kenny

The application of a multifactorial intervention known to work in a cognitively intact population does not lead to a reduction in falls in a cognitively impaired population

Extrapolation from existing trials

If the mechanism by which the intervention has it's effect is understood and not felt to affected by the presence of cognitive impairment / dementia then it is reasonable to extrapolate data from trials undertaken in cognitively intact populations

Example 1. Treatment of osteoporosis with bisphosphonates Example 2. Vitamin D

However – that assumes that the risk factor profile and contributors to overall risk in cognitively impaired people is comparable to that of cognitively intact subjects

FOCIS Falls in Older Cognitively Impaired Subjects

- Prospective risk factor study
- Targeting cognitively impaired older people
- Aged 60+
- MMSE <24, ACE-R<82 or clinician diagnosis of dementia
- Look at cognitive and physical contributors to risk
- Ultimate aim to design successful approaches to intervention

Physiological and Cognitive Variables

- Strength
- ACE-R, MMSE
- Balance
- Trails A & B
- Vision
- Logical memory
- Reaction time
- GDS
- Proprioception
- BNT
- STS
- FES-I
- TUG
- 6m walk

Variable	N=177
Age (median, range)	83 (61.8-99)
Female (%)	100 (56.5)
Place of residence Home (%) Hostel (%)	138 (80) 39 (20)
Living arrangements Alone (%) With someone (%) Hostel / convent (%)	35 (17) 102 (58) 40 (23)
Years of education (median, range)	9 (0-19)
MMSE Score	22.8
ACE-R Score	65.5
Previous faller (%)	111 (62.7)
Previous recurrent faller (%)	60 (33.9%)

Physiological Measure	_	ly Impaired :177)	_	vely Intact :352)
Melbourne Edge Test	20	(17 - 21)	19	(18 - 21)
Proprioception	2	(1.4 – 3.4)	2.2	(1.2 - 3.2)
Reaction Time (ms)*	273	(235 – 351)	254	(217 – 280)
Quads Strength (kg)*	19	(13 – 24)	23	(17 - 31)
Balance (mm²)*	1907	(987 – 2500)	818	(477 – 1520)
Falls Risk Score*	2.0	(0.9 – 3.1)	0.77	(0.17 – 1.65)

Group Comparison at 6 months		
Non-Faller n= 92	Faller n= 79	
54%	46%	
	39/79 (49%)	
82.3	83.1	
38 (51) 54 (56) 10.1	37 (49) 42 (44) 9.5	
6.9	8.5	
26 (28%)	34 (43%)	
	Non-Faller n= 92 54% 82.3 38 (51) 54 (56) 10.1 6.9	

Physiological Measures			
	Non-Faller n= 92	Faller n= 79	CI
Contrast sensitivity (dB)	19	18	19
Quad Strength (kg) *	20	16	23
Reaction Time (ms)	337	352	254
Sway on floor, eyes open (mm²) *	544	960	
Sway on foam, eyes open (mm²) *	3574	7370	818
Proprioception (°)	2.5	3.1	2.2

Physiological Measures			
Non-Faller n= 92	Faller n= 79		
20	27		
8	7		
8	11		
19	24		
32	47		
20	20		
	Non-Faller n= 92 20 8 8 19		

Neuropsychological Measures

	Non-Faller n= 92	Faller n= 79
MMSE	23	22
Attention*	4.4	3.8
ACE-R	66	64
FES-I*	9.5	11
GDS-15*	2.5	4.5

Multivariate Model

Independent and significant predictors:

	OR (95% CI)
Sway	1.76 (1.23-2.50)
GDS	1.26 (1.11-1.43)
Attention	0.73 (0.55-0.96)

FOCIS - to date

- High risk population
- Physiologically poor in comparison to matched CI population
- · Fallers in 6 months are poorer in terms
 - · Physiological performance
 - Mood
- Have potentially modifiable risk factors

AGS/BGS Guidelines - Jan 2010

"There is insufficient evidence to recommend for or against multifactorial or single interventions to prevent falls in older persons with known dementia living in the community or in long-term care facilities".

Intervention in the Community

EXERCISE INTERVENTIONS - Level 1 evidence

Wolf, 1996 "free from debilitating processes" Campbell, 1997 MSQ <7

'major psychiatric illness' Buchner, 1997

Robertson, 2001 "unable to understand trial requirements" Barnett, 2003 "excluded if they had cognitive impairment"

Lord, 2003 Means 2005 MMSE <25

Li 2005 "having no cognitive impairment" Skelton 2005 "significant cognitive impairment" Voukelatos 2007 "excluded if they had dementia"

Extrapolation - if benefits from exercise are from improved strength. balance & reaction time - why shouldn't people with cognitive impairment and dementia benefit.

Intervention in the Community

NON-EXERCISE SINGLE INTERVENTIONS

Cumming , 1999 not excluded if live in carer

Nikolaus, 2003 excluded "severe cognitive decline" Campbell 2005

"unable to understand trial requirements"

Harwood, 2005 excluded "those with memory problems preventing the completion of the lengthy questionnaire"

Kenny, 2001 MMSE <24 Day, 2002 MSQ < 6 Campbell, 1999 MSQ <7

Pitt, 2007 Intervention was with GPs

Haran 2010 MMSE <24

Extrapolation – Cognitively impaired people will have been included in some of these studies. Above interventions may have benefit in people with cognitive impairment.

Intervention in the Community

MULTIPLE / MULTIFACETED INTERVENTIONS

Tinetti, 1994 MMSE <20

Hornbrook, 1994 "severely mentally ill"

Clemson 2002 MSQ <8

Wagner, 1994 ?

Close, 1999 not excluded if live in carer

Davison, 2005 MMSE <24

*Mahoney 2007 benefits only in people with MMSE <27

Extrapolation – Cognitively impaired people will have been included in some of these studies. Above interventions may have benefit in people with cognitive impairment.

Interventions in RACF

MULTIFACETED INTERVENTION

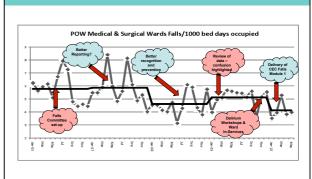
Ray 1997 Did not exclude cognitively impaired
Jensen 2002 Did not exclude cognitively impaired
Schnelle 2002 Did not exclude cognitively impaired
Becker 2003 Did not exclude cognitively impaired

Jensen 2003 – benefits were in those with MMSE >19

Becker 2008 – benefits were enhanced in those with cognitive impairment

(MDS-Rai)

Cognitively impaired people should not be excluded from multifaceted RACF based falls prevention programs


Interventions in Hospitals

MULTIFACETED INTERVENTION

Haines 2004 Cognitively impaired people included
Healey 2004 Cognitively impaired people included
Stenvall 2007 Cognitively impaired people included
Dykes 2010 Cognitively impaired people included

Cognitively impaired people should not be excluded from multifaceted hospital based falls prevention programs

Preventing In-Patient Falls - A Journey not an RCT

Conclusions

- People with cognitive impairment are at increased risk of falls
- The risk factors identified in this population are similar to cognitively intact older people
- Extrapolation of results from cognitively intact populations to cognitively impaired populations requires careful consideration
- Cognitive impairment has not been an exclusion criteria in successful trials in hospitals and RACF
- More research required to test approaches to intervention

Acknowledgements

- Stephen Lord
- Morag Taylor
- Stef Mikolaizak
- Tasha Kvelde
- Jodie Martin
- Henry Brodaty
- The Falls Advisory and Implementation Group POWH
- Area Health Service Falls Steering Group